VarFish DevDocs
Release 0.1.0-8-g0b3119e

Manuel Holtgrewe

May 13, 2024

Architecture

Dataflows

Future Plans

GitHub Overview

Datasources

DOCUMENTS

13
19

21

CHAPTER
ONE

ARCHITECTURE

This section describes the overall architecture of VarFish. Below is a high-level overview of the software components
and the interaction with the end user. Components developed by the team are shown in blue, third-party components
are depicted in violet, component groups are in yellow color.

All components run in a Docker Compose environment. Also, we use the Traefik reverse proxy for routing requests to
the correct service (not shown below).

VarFish DevDocs, Release 0.1.0-8-g0b3119e

end user

VarFish Server

v

VarFish Celery

Postgres

end user

vServer Core

Backing Services

TR

Remote Services

PubTator 3
VarianvtValidator

GA4GH
Beacon Network

CADA-Prio
CADD REST

The end user (data analyst) uses their web browser to connect to the Varfish Server and interacts with the system.

Chapter 1. Architecture

VarFish DevDocs, Release 0.1.0-8-g0b3119e

operator user
The user operating a VarFish instance interfaces with the system also via the web user interface. Certain actions
must be performed via REST APIs provided by the VarFish Server, in particular importing data for later analysis.

1.1 Core System

The following services comprise the Core System that implements the business logic. This system is aware of the
currently logged in user and the information stored in the Postgres database such as the case information.

VarFish Server
The VarFish Server provides a web-based interface to the software and implements parts of the logic. It provides
Python/Django web application that serves as the backend for the frontend implementing the product’s core
functionality. The core functionality is implemented in a TypeScript/Vue based single page app (SPA) that itself
is served by the backend and then uses REST APIs to communicate with the backend.

Varfish Celery
We use the Celery task queue system to run jobs in the background that cannot be executed in very short time.
The Server uses this for running queries, imports. Also, Celery is used for scheduling maintenance tasks such as
building the in-house database.

Postgres
We use the PostgreSQL relational database management system to store large parts of the data. For large tables,
sharding/partitioning is used for improving performance.

Note: The bulk of the data is currently stored in Postgres. Work is underway to move this to an internal object storage
and run queries on this storage. This will allow for more optimized queries and scaling as the Postgres system will not
be the single bottleneck anymore.

1.2 Backing Services

There is a list of services that run in the background within the VarFish instance that the user does not interact with
directly. They provide HTTP-based URLSs to the core system then are stateless. There is no interaction betwen these
services.

File System
These servics generally store their data on the file system.

Annonars
The Annonars service provides fast access to information specific to genes, seqvars, and strucvars. For example,
it stores the gene overview information, gene-wise aggregated ClinVar information, and precomputed variant
scores. Note that the static precomputed gene information includes the link between genes and conditions. This
service requires large amounts of local storage.

Mehari
The Mehari service provides computations of variant effects on the transcript level. For example, it can predict
that a given genomic variant leads to missense or frameshift change on a protein or predict that a structural variant
creates a breakpoint in an exon or intron. Mehari also provides access to gene transcript information that can be
used for rending exon/intron graphics.

Viguno
The Viguno service provides access to the Human Phenotype Ontology (HPO). First, it provides access to the
HPO in the common ontology/graph-based fashion, allowing for linking between terms and terms, terms and
diseases, etc. It also provides simple similarity computations based on information content. Second, it provides

1.1. Core System 3

VarFish DevDocs, Release 0.1.0-8-g0b3119e

a full text index on the HPO text content. This allows for looking up HPO terms based on their names, aliases,
but also descriptions.

NGINX
The NGING service is a simple HTTP web server that is used for serving static files. This is used for serving
genome browser tracks, for example.

CADA-Prio
This is a service that provides similarity predictions between lists of terms and genes based on knowledge graph
embeddings. It allows for prioritizing genes given the phenotypic description of a patient.

CADD REST
This is a thin wrapper that provides access to the third-party CADD scripts, a software package allowing for the
computation of genomic variant scores. The CADD score authors provide precomputed scores for all genomic
single nucleotide variants and a list of known indel variants. For scoring novel variants, this is needed. This
service requires large amounts of local storage. Also, the CADD scripts use various external software such as
the ENSEMBL Variant Effect Predictor.

Exomiser
This is a third-party service implementing several algorithms for computing similarity between lists of phenotype
terms and genes.

Redis
This is a key-value store that is used for caching and storing temporary data by the core services.

Note: These services generally only need little storage space with the exception of Annonars and CADD REST. The
small amounts of data could be downloaded from a central location on startup in future versions. In the case that
the large storage requirements of Annonars pose a problem, a migration to object storage backend would need to be
implemented. Candidates are TileDB. CADD REST is more problematic.

Note: With recent versions of the HPO, information content is not very useful for variant prioritization.

1.3 Remote Services

VarFish also provides access to certain remote services run by third parties. This reduces the complexity of local
hosting and keeping data up to date and even is necessary for some kinds of services. On the other hand, it makes the
instance rely on the availability of these remote services.

PubTator 3
VarFish uses the PubTator 3 API for providing relevant literature information for genes.

VariantValidator
The VariantValidator.org service is used for providing gold standard HGVS descriptions for seqvars.

GA4GH Beacon Network
The GA4GH Beacon Network embeddable IFRAME is used for alllowing to query the GA4GH Beacon Network
for variant information.

Genomics England PanelApp
We use the GE PanelApp API for fetching up-to-date gene panel information.

4 Chapter 1. Architecture

CHAPTER
TWO

DATAFLOWS

This section describes the dataflows in the VarFish system. We split the description into the following parts.

1.

2.1

Bulk Data Preparation describes the dataflow for preparing the bulk background used by the Backing Services
from Architecture.

Annotation Process / Import describes the annotation process that prepares variant VCF files for import into
VarFish and the import itself.

Query Processing describes how the VarFish Server handles queries.
Periodic Background Tasks describes the dataflows by the periodic background tasks.

User Interaction describes the remaining dataflows done by the user annotation.

Bulk Data Preparation

There are three parts to the bulk data preparation, depicted below.

VarFish DevDocs, Release 0.1.0-8-g0b3119e

Public

Data Sources

—_ Varfish DB —p>

Downloader

S3 Server

NCBI ClinVar ——»

clinvar-data-jsonl

ENSEMBL

RefSeq

CDOT

GitHub
Releases

. Deployed

——» mehari-data-tx

GitHub
Releases

Instance

First, we use a Snakemake worfklow (called varfish-db-downloader) that downloads the necessary public domain
data from the internet for most of the data. The data is then processed with the workflow and the bulk data files are
created that can be used by the Backing Services.

Chapter 2. Dataflows

VarFish DevDocs, Release 0.1.0-8-g0b3119e

The workflow is executed manually by the VarFish team. The results are uploaded to our public S3 servers. On
deployment, the files are downloaded by downloader/installer scripts that the team provides.

The workflow features a continuous integration test mode where file excerpts are used for smoke testing the functionality
of the workflow. Further, the continuous integration checks availability of the upstream files. Using a Snakemake
workflow together with using a conda environment for dependencies allows for reproducible data preparation.

ClinVar data is prepared differently. Here, we have a software clinvar-this that is capable of converting ClinVar
XML files and convert them into JSON lines (JSONL) format. These JSONL files can then be processed by the
software packages also used in the Backing services. The GitHub repository clinvar-data-jsonl hosts continuous
integration that downloads the weekly ClinVar releases, uses clinvar-this to transform the XML files to JSONL,
and finally publish them as GitHub software releases. A third GitHub repository annonars-data-clinvar uses the
output of clinvar-data-jsonl to prepare the per-gene aggregations and per-variant ClinVar files to be used by the
Annonars Backing Service. These files are installed on deployment and can later be updated.

Transcript data is also prepared differently. We use the output of the third-party CDOT project that provides RefSeq
and ENSEMBL transcripts. The CI in the GitHub project mehari-data-tx downloads the transcripts from the CDOT
releases and fetches the corresponding sequences form the NCBI and ENSEMBL servers. It then prepares the transcript
data files for the genome releases with the Mehari software. The resulting files are then also published as GitHub
software releases. As for the ClinVar files, these files are installed on deployment and can later be updated.

2.2 Annotation Process / Import

Variant callers create variant call format (VCF) files that first must be annotated into tab separated value (TSV) files
before import into VarFish. For this, we use the Mehari software. Mehari uses population frequency and transcript
data files generated by the Bulk Data Preparation step that must be downloaded once.

2.2. Annotation Process / Import 7

VarFish DevDocs, Release 0.1.0-8-g0b3119e

Frequency /
Transcript Data (2)createjobr
‘ Mehari Annotate }—P{ Annotated TSV File }—P{ VarFish CLI }—P{ VarFish Server ‘ P
Seqvar/Strucvar (1) store‘da'm—+ Postgres
VCF Files

ImportJob

(4) write final

The VarFish operator user then uses Mehari to annotate and aggregate each the sequence and the structural variant VCF
files into on TSV file per variant type (seqvar/strucvar). These files are then uploaded via the VarFish Command Line
Interface (CLI).

8 Chapter 2. Dataflows

VarFish DevDocs, Release 0.1.0-8-g0b3119e

The VarFish Server stores the uploaded data in the Postgres database and creates a background job for importing the
data. When the import job is run, it will perform certain data processing such as computing quality control metrics
and performing fingerprinting of the variant data to allow checking for family relationships. The resulting data is then
stored in the final location in the Postgres database where it is available to the user.

2.3 Query Processing

Query processing is straightforward and the same for seqvar and strucvar queries.

2.3. Query Processing 9

VarFish DevDocs, Release 0.1.0-8-g0b3119e

(2) execute query

create Query Job le
(1.1) launch query Postgres

(3) query results

1

Frontend V VarFish Server (1-2)check state
(3) fetch results

The user ceates a new query in the frontend provided by VarFish Server. The server creates a query background job
with the query specificaiton for execution in the background.

10 Chapter 2. Dataflows

VarFish DevDocs, Release 0.1.0-8-g0b3119e

When the job is executed, it loads the query, generates a Postgres SQL query and executes it. The resulting rows are
inserted into the query results table for use by the user.

The frontend polls the server for the state of the query. When the query is complete, the data is loaded into the frontend
for interaction by the user.

2.4 Periodic Background Tasks

There is a number of background tasks that work on the database. The most important maintenance task rebuilds the
in-house background database. This is currently done by re-creating a materialized view in the Postgres database.

2.5 User Interaction

Besides query processing, the user can interact in various ways. This interactive works leads to transactional/atomic
updates in the database, e.g., by editing properties of a case or annotating case members with HPO terms. This is done
with operations that appear blocking to the client and not in background tasks.

2.4. Periodic Background Tasks 11

VarFish DevDocs, Release 0.1.0-8-g0b3119e

12 Chapter 2. Dataflows

CHAPTER
THREE

FUTURE PLANS

This section contains a description of upcoming high-level changes to the VarFish software. The sections below have
been extrapolated from the current issue list.

3.1 Technical Debt

There is some technical debt, some notable items.

Automated Tests
We need more automated tests in various areas throughout the codebase.

Python Type Annotations
We should modernize the codebase by comprehensive use of Python type annotations. Notable, this will require
type annotations for sodar-core.

Backing Server Protobuf Migration
The backing services should expose JSON-serialized protobufs on their APIs. This will allow for code generation
of API clients.

3.2 GRCh38 Migration

We support instances with variants in GRCh37, GRCh38, or both genome build coordinates. However, there is no
good upgrade path implemented yet. The plan here is to provide semi-automated ways to lift over user annotations
from GRCh37 to GRCh38 and merely notify people about the cases where this fails. Variants will need reprocessing
and reimport of the original data as we don’t consider lift-over of variants to be reliable in the general case.

3.3 Vuetify Migration

We need to finalize the migration to the Vuetify framework in the frontend. Further, we should have the VarFish-specific
part of the site (outside of what is provided by sodar-core) become a true SPA without embedding into the HTML +
Bootstrap CSS.

13

VarFish DevDocs, Release 0.1.0-8-g0b3119e

3.4 Custom Query Presets

We already have some support for custom query presets. The seqvar query presets need fixing and extension. The
strucvar query presets is missing large parts of implementation (all of the editing functionality).

3.5 Case Management

We can attach states such as “closed as solved” to cases, note, and comments. However, assigning responsible persons
to cases and implementing real “workflows” on the case level, e.g., with approval of supervising physicians, is missing.

3.6 ClinVar Uploads

ClinVar uploads are currently missing. We have the library to perform this already in place and a working implemen-
tation of UI can be found in REEV. This needs careful planning and integration with Case Management.

3.7 Useability Improvements

The VarFish user interface is useable. However, there is the need for various improvements to improve the user expe-
rience.

Faster Flagging
The aim here is to provide users with faster “time to flag as X” for variants. This is particularly important for
visual artifacts in IGV or variants that do not have a connected phenotype. This includes both the decision making
and access to setting flags.

Better Details Access
The aim here is to provide users with the information that they need for assessing a variant faster. This includes
both gene and variant details. Improvements can be done by selecting which information where in a smarter way.
Further improvements can be of technical nature (fewer clicks, faster load times).

Smart Information Access
In all relevant places such as query result view, variant details, gene details. Again, the aim is to provide users
with the information that they need for assessing a variant faster.

Blinded Case Analysis
The aim here is to provide a blinded four-eyes principle for case analysis.

Other Carriers
The aim here is to provide a quick way to see other cases of the same/similar variants (same genomic position,
same amino acid, same gene). Also, a visualization of the variation landscape in the gene in the database vs.
ClinVar vs. gnomAD would be useful.

Second Hit
In the case of recessive disorders, it should be faster to find a second hit. The idea is that based on a suspicious
pathogenic variant, the second hit can be easily found. This could be a strucvar overlapping the same gene or
another sevar in the same gene that is harder to interpret. E.g., a splicing, deep intronic, and/or UTR variant.

Phased Variants
Haplotype-based variant callers provide phasing information, at least if one read can cover two variants. We
currently don’t expose this information.

14 Chapter 3. Future Plans

VarFish DevDocs, Release 0.1.0-8-g0b3119e

3.8 Integrated Variant Analysis

There currently is a strong separation between seqvar and strucvar analysis. We should implement several strategies
for an integrated analysis, taking the case phenotype into consideration.

3.9 Report Generation

There are multiple aspects to report generation. This could consist of providing detailed pages for variants with a
selected criteria (e.g., all flagged/considered variants). Alternatively, this could consist of automatically filling letter
templates with variant information.

3.10 Cohort Filtering

A much requested feature is performing queries on a cohort level. We already had a version working earlier that had
problems with performance. This needs to be re-tackled after the migration to the next-gen dataflows is complete.

3.11 Next-Gen Dataflows

The classic location for variants in VarFish is the postgres database. This works quite well on fast baremetal NVME
disk arrays but makes the database the single bottleneck. It is thus desirable to reengineer this part and work is already
underway on this.

We will rather work with data in object storage via the S3 protocol. By default, Varfish instances will come with
an embedded MinlO server for this purpose but external servers can also be used. Users upload their case files to
a location VarFish can access (e.g., S3, HTTPS, local file system) and VarFish is told the location and possibly the
necessary credentials. For import, users only upload a Phenopackets YAML file with the case manifest. VarFish then
imports the case in a background job. Only the essential files such as variant data (VCF) and QC files are actually read.
Other files such as BAM files, coverage .wig files, etc. are registered in the database (this allows proxying to them and
redisplaying as also mentioned in Genome Browsers).

VarFish then runs an ingest step that processes the raw caller VCF files and potentially merges VCF files from the
same caller. The resulting ingested VCEF files are then stored in the internal object storage. Further preprocessing can
take place, e.g., prefiltering to certain variants such as near-exonic ones. QC data is imported into the database and
potentially additional QC is computed. Filtration is also done directly on the VCF files from the internal S3 object
storage.

The data import is partially done in the server. We already have fast Rust-based executables for the variant ingest and
query execution. There are unit tests for these components but no integration or system tests yet. Further, the integration
in the server/frontend has not been started yet.

The best way forward is to keep this “next-gen dataflow” in addition to the classic version. Cases imported in the new
way get a tag “version=2" and the new (and yet to be implemented in some parts) code paths will be used for them
while the legacy code paths will remain.

3.8. Integrated Variant Analysis 15

VarFish DevDocs, Release 0.1.0-8-g0b3119e

3.12 ACMG Criteria Ul

We currently have a working version of Richars et al. 2015 implemented. We need to bring this to the latest ACMG
version, ideally both score- and rule-based with certain rule sets (e.g., ACGS, AMP, etc.). Further, we are completely
lacking this for strucvars. For the latter, this strongly depends on ACMG Automation as the rules are highly complex
here.

3.13 ACMG Automation

We need to implement ACMG implementation. We have a working implementation (not widely tested) for strucvars
that is only missing PVS1 automation. Seqvars is completely missing.

3.14 ClinGen VCEP

There is a number of genes for which experts have developed complex rule sets. It would be very useful to have a “rule
engine” (could just be some per-gene Python code maintained and deployed with VarFish server) that supports users
in these well-known genes with complex rules.

3.15 Additional Variant Types

We currently only support seqvars and strucvars. The following variant types are commonly called from NGS (short
and long-read) data.

Repeat Expansion
E.g., with ExpansionHunger from short-read data or directly from long-read data.

ROH (Run of Homozygosity) / LOH (Loss of Heterozygosity)
Useful for computing scores such as autozygosity which provides insights into relationships and is useful for qual-
ity control. ROH data is also often used for the identification of candidate regions. It will be easy to implement
a graphical tool for homozygosity mapping.

SMA (Spinal Muscular Atrophy) Calling
There are specialized callers to call SMA mutations from NGS data which is challenging and included in DRA-
GEN output. However, it is questionable how useful this is in a clinical setting as there are cheaper standard
tests.

CYP2D6 Caller
Similar to SMA calling, there are callers and one is included in DRAGEN output. However, questionable how
important this is.

HLA Calling
HLA calling can be important in certain aspects and by now there are decent callers for NGS available. Again,
it is questionable how much demand there is for it.

Methylation Calling
ONT sequencing provides methylation information. Such information could also come from a matched methy-
lation array.

16 Chapter 3. Future Plans

VarFish DevDocs, Release 0.1.0-8-g0b3119e

3.16 Long Reads

We currently have “long read support” already as we can import variants from such data. However, we will need
to adjust rule sets and extend the builtin presets. As outlined in Additional Variant Types, it also gives support to
methylation information.

3.17 RNA-Seq

The integration of DNA variant data and RNA-seq expression data can be useful. However, there are not many proven
cases for ab initio RNA-seq for gene prioritization. Maybe this is primarily useful for integrated analysis where RNA-
seq is used for follow-up.

3.18 Genome Browsers

After implementing Next-Gen Dataflows, we also have information about the BAM files in external locations linked to
from VarFish. We can then proxy HTTP requests to them via VarFish and generate IGV sessions or display them in
integrated genome browsers such as IGV.js or alternatives.

3.19 Local PubTator

PubTator is very useful for semantic search of literature connected to a gene. The public API has a rate limit. It is
open source and all data is available in monthly dumps. It might make sense to create a local mirror but this would
increase the gap between publication and availability in VarFish to up to a month. An alternative would be to roll our
own engine based on a full text search engine such as QuickWit and open source named entity recognition libraries and
ingest the sub-daily releases of PubMed abstracts.

3.20 Facial Gestalt Integration

Facial gestalt matching is a useful technique for variant priorization. There is a prototype integration with Gestalt-
Matcher from Bonn. This integration needs work for a production-ready state but this can also lead into starting out
with plugin extension points for VarFish for the deep integration of further external tools.

3.21 Somatic Variant Analysis

Alternative tools such as cBioPortal are well-suitable for the analysis of cancer variant data, in particular in a cohort
fashion. However, in certain cases, the analysis of cancer cases with VarFish could be useful.

3.16. Long Reads 17

VarFish DevDocs, Release 0.1.0-8-g0b3119e

3.22 Beacon Networks

There is some implementation of connecting two VarFish instances via the Beacon API. This could be explored further
or removed.

3.23 REEV Community

We have implemented a public single-variant interpretation tool called REEV. VarFish instances could be connected
together by registering variant annotations and comments there and thus sharing knowledge and connecting to other
users. More features could be implemented to create “groups” in REEYV, such that consortia could use it as a connecting
component for their local VarFish instances.

3.24 Pipeline Integrations

We could implement a feature that allows for integrating data processing pipelines with VarFish. Users could register
meta data together with their FASTQ files or even flow cell raw data. The pipelines could then be started running
mapping, variant calling, and QC etc. The results could then be imported into VarFish. VarFish would orchestrate the
pipeline runs through existing external software.

Potential existing pipelines include DRAGEN, ParaBricks, or custom Nextflow / Snakemake pipelines.

3.25 Plugin Extension Points

VarFish could serve as a platform for the integration of external tools. Working examples are the Exomiser for variant
prioritization and an emerging one is the GestaltMatcher integration in Facial Gestalt Integration. Allowing further
integration with other prediction tools or LIMS systems (Gepardo?) could offer the vendors of such tools to integrate
well with VarFish.

3.26 Comprehensive APIs

Current API support focuses on what the frontend needs and we don’t have comprehensive APIs yet. Having such APIs
would be very useful though, and enable using VarFish as a backend for other tools and platforms.

3.27 Scriptable VarFish

In the inverse of Comprehensive APIs, we could offer scripting of the query engine. This would allow advanced users
to implement comprehensive analysis directly in VarFish.

18 Chapter 3. Future Plans

CHAPTER
FOUR

GITHUB OVERVIEW

This section gives an overview of the GitHub repositories relevant to the VarFish project. All are in varfish-org,
version 2.0 of the Apache license is used.

4.1 Direct Importance

The following repositories are directly important and provide functionality used by the system.

name license synopsis

annonars MIT precomputed variant, region, and gene annotation
annonars-data-clinvar MIT ClinVar data builds for annonars

cada-prio MIT phenotype-based prioritization based on knowledge graph embeddings
cadd-rest-api MIT REST API wrapper for CADD-scripts

cadd-rest-api-mock MIT mocking the CADD REST API server for VarFish development
clinvar-data-jsonl MIT weekly ClinVar releases as JSONL plus useful aggregation
clinvar-this MIT ClinVar submission and XML dump file parsing

mehari MIT transcript effect annotation and tx model information
mehari-data-tx MIT transcript data builds for mehari

varfish-db-downloader MIT Snakemake workflow to download public data

varfish-cli MIT command line interface for VarFish REST API
varfish-dev-docs MIT documentation for developers

varfish-docker-compose-ng MIT setup VarFish with Docker Compose

varfish-server MIT VarFish web server

varfish-server-worker MIT heavy lifting in varfish-server written in Rust

viguno Apache HPO ontology access and full-text search

4.2 Indirect Importance

The following are dependencies of the one in Direct Importance maintained by us and housekeeping tools.

19

VarFish DevDocs, Release 0.1.0-8-g0b3119e

name license synopsis

biocommons-bioutils-rs Apache (partial) port of biocommons/bioutils to Rust

hgvs-rs Apache port of biocommons/hgvs to the Rust programming lan-
guage

rocksdb-utils-lookup Apache utility library for using RocksDB as lookup tables

seqrepo-rs Apache a port of biocommons/seqrepo to the Rust programming
language

4.3 Experimental

The following contain experimental, under development, or unfinished code.

name license synopsis

scarus Apache automated evaluation of ACMG rules
varfish-clinical-beacon-client MIT client for clinical beacons API proof of concept
varfish-wf-validation MIT Snakemake workflow for automated validation
varfish-cli-ng MIT VarFish CLI based on aws-smithy

4.4 Legacy

The following are legacy repositories.

name license synopsis

varfish-course-scripts MIT scripts for generating the data used in the VarFish course
varfish-wf-queries MIT VarFish (Snakemake) Client Workflow for Querying Snakemake
varfish-docker-compose ~ MIT legacy setup VarFish as using Docker Compose

varfish-anno MIT convert annotation database files to Var:fish: import format
varfish-installer MIT use varfish-docker-compose instead

varfish-annotator MIT annotate variants for import into VarFish server
varfish-data-igsr MIT repository for building IGSR data sets for use in VarFish

20 Chapter 4. GitHub Overview

CHAPTER
FIVE

DATASOURCES

This section documents the datasources used as input for the static data available in VarFish.

The download and precomputation is done by the Snakemake workflow in varfish-db-downloader. This git repos-
itory uses continous integration with a reduced dataset (and some small data that is used from the repository directly,
such as a list of curated microdeletion/-duplication regions from the literature) for automated testing. The reduced
dataset is downloaded automatically from URLs in a download_urls.yml file. Thus, there is full transparency and
traceability of the data sources used. Further, a nightly CI job is run to check whether the URLSs are still available (but
not if the data has changed).

5.1 Data in Repository

The following datasources are used directly from the repository.

Name License Synopsis Source

ACMG SF List v3.1 public domain Supplementary Findings Gene PMID:35802134
List of ACMG

DOMINO Public Domain Score for assessing the probabil- Institute of Molec-
ity for a gene to harbour domi- ular and Clin-
nant changes ical Ophthal-

mology Basel;
PMID:28985496

Enrichment Regions Public Domain Target regions of NGS enrich- UCSC Table
ment kits Browser
Patho MMS Public Domain Curated regions for microdele- PMID:36435749
tion and microduplication scores
sHet N/A (Emailed Au- Gene haploinsuffiency score PMID:31004148
thor)

21

https://europepmc.org/article/med/35802134
https://europepmc.org/article/med/28985496
https://genome.ucsc.edu/license/
https://genome.ucsc.edu/cgi-bin/hgTables?db=hg19&hgta_group=map&hgta_track=exomeProbesets&hgta_table=MGI_Exome_Capture_V5&hgta_doSchema=describe+table+schema
https://genome.ucsc.edu/cgi-bin/hgTables?db=hg19&hgta_group=map&hgta_track=exomeProbesets&hgta_table=MGI_Exome_Capture_V5&hgta_doSchema=describe+table+schema
https://europepmc.org/article/med/36435749
https://europepmc.org/article/med/31004148

VarFish DevDocs, Release 0.1.0-8-g0b3119e

5.2 Downloaded Data

The following datasources are downloaded from public internet resources.

Name License Synopsis Source
AlphaMissense CC BY-NC-SA 4.0 AlphaMissense score AlphaMissense
CADD Score free for non- sequence variant pathogenicity CADD
commercial scores
ClinGen CCO clinical gene and genome anno- ClinGen
tation
Comparative Toxicogenomics free for non- database of biologicalnameden- CTD
Database commercial tities
dbNSFP academic suitable for aca- nonsynonymous variant dbNSFP
demic use pathogenicity scores
dbNSFP commercial suitable for commer- nonsynonymous variant dbNSFP
cial use pathogenicity scores
dbSNP no restrictions Structural variants from dbSNP ~ NCBI dbVar
dbVar no restrictions Structural variants from dbVar NCBI dbVar
Database of Genomic Variants no restrictions Structural variants from DGV The Centre for Ap-
(DGV) plied Genomics
DECIPHER HI N/A (Emailed Au- DECIPHER haploinsufficiency PMID:20976243
thor) score
ENSEMBL no restriction ENSEMBL gene/genome anno- ENSEMBL
tation and transcripts
ExAC CNVs no restrictions Copy number variants from gnomAD
ExAC
GenomicsEngland PanelApp non-commercial Gene panels with disease associ- GenomicsEngland
ations from Genomics England
gnomAD exomes and genomes ~ no restrictions sequence and structural variants, gnomAD
gene constraint scores
GTeX free tissue-specific gene expression GTEx
HelixMtDb N/A (Emailed Au- mitochondrial genome frequen- HelixMtDb
thor) cies
HGNC CCO gene information HGNC
HPO free Human Phenotype Ontology HPO
Human Disease Ontology (DO) CCO ontology of human diseases Disease Ontology
MONDO CCBY 4.0 Mondo Disease Ontology OBO Foundry
NCBI ClinVar no restrictions clinical variant interpretation NCBI ClinVar
NCBI Gene no restrictions gene information NCBI Gene
NCBI mim2gene no restrictions gene-disease associations NCBI MedGen
NCBI RefSeq no restrictions gene/genome annotation and NCBI RefSeq
transcripts
OMIM titles restricted some OMIM disease names are misc. other data-
contained in other databases sources
such as HPO
ORDO CCBY 4.0 Orphanet Rare Disease Ontol- BioOntology.org
ogy
Orphadata CCBY 4.0 Orphanet disease-gene associa- Orphadata
tions
rCNV Score no restrictions dosage sensitivity score PMID:35917817

TAD annotation

N/A (Emailed Au-
thor)

Topologically Associated Do-
mains annotation

YUE Lab

continues on next page

22

Chapter 5. Datasources

https://github.com/google-deepmind/alphamissense?tab=readme-ov-file#alphamissense-predictions-license
https://github.com/google-deepmind/alphamissense
https://cadd.gs.washington.edu/
https://cadd.gs.washington.edu/
https://cadd.gs.washington.edu/
https://clinicalgenome.org/docs/terms-of-use/
https://clinicalgenome.org/
https://www.catalystresearch.io/products/ctd
https://www.catalystresearch.io/products/ctd
https://ctdbase.org/
https://sites.google.com/site/jpopgen/dbNSFP
https://sites.google.com/site/jpopgen/dbNSFP
https://www.ncbi.nlm.nih.gov/home/about/policies/
https://www.ncbi.nlm.nih.gov/snp
https://www.ncbi.nlm.nih.gov/home/about/policies/
https://www.ncbi.nlm.nih.gov/dbvar
http://dgv.tcag.ca/dgv/app/home
http://dgv.tcag.ca/dgv/app/home
https://europepmc.org/article/MED/20976243
http://www.ensembl.org/info/about/legal/disclaimer.html
http://www.ensembl.org/index.html
https://gnomad.broadinstitute.org/policies
https://gnomad.broadinstitute.org/
https://prod-media-panelapp.genomicsengland.co.uk/media/files/GEL_-_PanelApp_Terms_of_Use_December_2019.pdf
https://panelapp.genomicsengland.co.uk/
https://gnomad.broadinstitute.org/policies
https://gnomad.broadinstitute.org/
https://www.gtexportal.org/home/license
https://www.gtexportal.org/home/
https://www.helix.com/mitochondrial-variant-database
https://www.genenames.org/about/license/
https://www.genenames.org/
https://hpo.jax.org/app/license
https://hpo.jax.org/app
https://obofoundry.org/ontology/doid.html
https://disease-ontology.org/
http://obofoundry.org/ontology/mondo.html
http://obofoundry.org/ontology/mondo.html
https://www.ncbi.nlm.nih.gov/home/about/policies/
https://www.ncbi.nlm.nih.gov/clinvar
https://www.ncbi.nlm.nih.gov/home/about/policies/
https://www.ncbi.nlm.nih.gov/gene
https://www.ncbi.nlm.nih.gov/home/about/policies/
https://ftp.ncbi.nih.gov/gene/DATA
https://www.ncbi.nlm.nih.gov/home/about/policies/
https://www.ncbi.nlm.nih.gov/refseq
https://www.ebi.ac.uk/ols4/ontologies/ordo
http://www.bioontology.org
https://www.orphadata.com/legal-notice/
https://www.orphadata.org/
https://gnomad.broadinstitute.org/policies
https://europepmc.org/article/med/35917817
http://3dgenome.fsm.northwestern.edu

VarFish DevDocs, Release 0.1.0-8-g0b3119e

Table 2 - continued from previous page

Name License Synopsis Source
1000G SV map Fort Lauderdale structural variants from thou- IGSR
Agreement sand genomes phase 3
UCSC assembly-related tracks no restrictions assembly-related tracks, ge- UCSC Table
nomicSuperDups, rmsk, Browser
altSeqLiftOverPsl, fixSe-

qLiftOverPsl, multiz100way

5.2. Downloaded Data

23

https://www.internationalgenome.org/faq/do-i-need-permission-to-use-igsr-data-in-my-own-scientific-research/
https://www.internationalgenome.org/faq/do-i-need-permission-to-use-igsr-data-in-my-own-scientific-research/
https://www.internationalgenome.org/data-portal/data-collection/structural-variation
https://genome.ucsc.edu/license/
https://genome.ucsc.edu/cgi-bin/hgTables
https://genome.ucsc.edu/cgi-bin/hgTables

	Architecture
	Core System
	Backing Services
	Remote Services

	Dataflows
	Bulk Data Preparation
	Annotation Process / Import
	Query Processing
	Periodic Background Tasks
	User Interaction

	Future Plans
	Technical Debt
	GRCh38 Migration
	Vuetify Migration
	Custom Query Presets
	Case Management
	ClinVar Uploads
	Useability Improvements
	Integrated Variant Analysis
	Report Generation
	Cohort Filtering
	Next-Gen Dataflows
	ACMG Criteria UI
	ACMG Automation
	ClinGen VCEP
	Additional Variant Types
	Long Reads
	RNA-Seq
	Genome Browsers
	Local PubTator
	Facial Gestalt Integration
	Somatic Variant Analysis
	Beacon Networks
	REEV Community
	Pipeline Integrations
	Plugin Extension Points
	Comprehensive APIs
	Scriptable VarFish

	GitHub Overview
	Direct Importance
	Indirect Importance
	Experimental
	Legacy

	Datasources
	Data in Repository
	Downloaded Data

